1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
//! This file contains proofs related to multiplication. These are
//! internal functions used within the math standard library.
//!
//! It's based on the following file from the Dafny math standard library:
//! `Source/DafnyStandardLibraries/src/Std/Arithmetic/Internal/MulInternals.dfy`.
//! That file has the following copyright notice:
//! /*******************************************************************************
//! * Original: Copyright (c) Microsoft Corporation
//! * SPDX-License-Identifier: MIT
//! *
//! * Modifications and Extensions: Copyright by the contributors to the Dafny Project
//! * SPDX-License-Identifier: MIT
//! *******************************************************************************/
#[allow(unused_imports)]
use super::super::super::prelude::*;
#[cfg(verus_keep_ghost)]
use super::super::super::arithmetic::internals::general_internals::{
is_le, lemma_induction_helper,
};
use super::super::super::arithmetic::internals::mul_internals_nonlinear as MulINL;
#[cfg(verus_keep_ghost)]
use super::super::super::math::{add as add1, sub as sub1};
verus! {
/// This function performs multiplication recursively. It's only valid
/// when `x` is non-negative.
#[verifier::opaque]
pub open spec fn mul_pos(x: int, y: int) -> int
recommends
x >= 0,
decreases x,
{
if x <= 0 {
0
} else {
y + mul_pos(x - 1, y)
}
}
/// This function performs multiplication recursively.
pub open spec fn mul_recursive(x: int, y: int) -> int {
if x >= 0 {
mul_pos(x, y)
} else {
-1 * mul_pos(-1 * x, y)
}
}
/// This utility function helps prove a mathematical property by
/// induction. The caller supplies an integer predicate, proves the
/// predicate holds in the base case of 0, and proves correctness of
/// inductive steps both upward and downward from the base case. This
/// lemma invokes induction to establish that the predicate holds for
/// all integers.
///
/// To prove inductive steps upward from the base case, the caller
/// must establish that, for any `i >= 0`, `f(i) ==> f(add1(i, 1))`.
/// `add1(i, 1)` is just `i + 1`, but written in a functional style
/// so that it can be used where functional triggers are required.
///
/// To prove inductive steps downward from the base case, the caller
/// must establish that, for any `i <= 0`, `f(i) ==> f(sub1(i, 1))`.
/// `sub1(i, 1)` is just `i - 1`, but written in a functional style
/// so that it can be used where functional triggers are required.
pub proof fn lemma_mul_induction(f: spec_fn(int) -> bool)
requires
f(0),
forall|i: int| i >= 0 && #[trigger] f(i) ==> #[trigger] f(add1(i, 1)),
forall|i: int| i <= 0 && #[trigger] f(i) ==> #[trigger] f(sub1(i, 1)),
ensures
forall|i: int| #[trigger] f(i),
{
assert forall|i: int| #[trigger] f(i) by { lemma_induction_helper(1, f, i) };
}
/// Proof that multiplication is always commutative
pub broadcast proof fn lemma_mul_commutes(x: int, y: int)
ensures
#[trigger] (x * y) == y * x,
{
}
/// Proof that multiplication distributes over addition by 1 and
/// over subtraction by 1
proof fn lemma_mul_successor()
ensures
forall|x: int, y: int| #[trigger] ((x + 1) * y) == x * y + y,
forall|x: int, y: int| #[trigger] ((x - 1) * y) == x * y - y,
{
assert forall|x: int, y: int| #[trigger] ((x + 1) * y) == x * y + y by {
MulINL::lemma_mul_is_distributive_add(y, x, 1);
}
assert forall|x: int, y: int| #[trigger] ((x - 1) * y) == x * y - y by {
assert((x - 1) * y == y * (x - 1));
MulINL::lemma_mul_is_distributive_add(y, x, -1);
assert(y * (x - 1) == y * x + y * -1);
assert(-1 * y == -y);
assert(x * y + (-1 * y) == x * y - y);
}
}
/// Proof that multiplication distributes over addition and over
/// subtraction
#[verifier::spinoff_prover]
pub broadcast proof fn lemma_mul_distributes_plus(x: int, y: int, z: int)
ensures
#[trigger] ((x + y) * z) == (x * z + y * z),
{
lemma_mul_successor();
assert forall|x: int, y: int, z: int| #[trigger] ((x + y) * z) == (x * z + y * z) by {
let f1 = |i: int| ((x + i) * z) == (x * z + i * z);
assert(f1(0));
assert forall|i: int| i >= 0 && #[trigger] f1(i) implies #[trigger] f1(add1(i, 1)) by {
assert((x + (i + 1)) * z == ((x + i) + 1) * z == (x + i) * z + z);
};
assert forall|i: int| i <= 0 && #[trigger] f1(i) implies #[trigger] f1(sub1(i, 1)) by {
assert((x + (i - 1)) * z == ((x + i) - 1) * z == (x + i) * z - z);
};
lemma_mul_induction(f1);
assert(f1(y));
}
}
#[verifier::spinoff_prover]
pub broadcast proof fn lemma_mul_distributes_minus(x: int, y: int, z: int)
ensures
#[trigger] ((x - y) * z) == (x * z - y * z),
{
lemma_mul_successor();
assert forall|x: int, y: int, z: int| #[trigger] ((x - y) * z) == (x * z - y * z) by {
let f2 = |i: int| ((x - i) * z) == (x * z - i * z);
assert(f2(0));
assert forall|i: int| i >= 0 && #[trigger] f2(i) implies #[trigger] f2(add1(i, 1)) by {
assert((x - (i + 1)) * z == ((x - i) - 1) * z == (x - i) * z - z);
};
assert forall|i: int| i <= 0 && #[trigger] f2(i) implies #[trigger] f2(sub1(i, 1)) by {
assert((x - (i - 1)) * z == ((x - i) + 1) * z == (x - i) * z + z);
};
lemma_mul_induction(f2);
assert(f2(y));
}
}
/// This function expresses that multiplication is commutative,
/// distributes over addition, and distributes over subtraction
pub open spec fn mul_auto() -> bool {
&&& forall|x: int, y: int| #[trigger] (x * y) == (y * x)
&&& forall|x: int, y: int, z: int| #[trigger] ((x + y) * z) == (x * z + y * z)
&&& forall|x: int, y: int, z: int| #[trigger] ((x - y) * z) == (x * z - y * z)
}
pub broadcast group group_mul_properties_internal {
lemma_mul_commutes,
lemma_mul_distributes_plus,
lemma_mul_distributes_minus,
}
// Check that the group_mul_properties_internal broadcast group group_provides the same properties as the _auto lemma it replaces
proof fn lemma_mul_properties_internal_prove_mul_auto()
ensures
mul_auto(),
{
broadcast use group_mul_properties_internal;
assert(mul_auto());
}
/// This utility function helps prove a mathematical property by
/// induction. The caller supplies an integer predicate `f`, proves
/// the predicate holds in the base case of 0, and proves correctness
/// of inductive steps both upward and downward from the base case.
/// This lemma invokes induction to establish that the predicate holds
/// for the given integer `x`.
///
/// To prove inductive steps upward from the base case, the caller
/// must establish that, for any `i`, `is_le(0, i)` implies `f(i) ==>
/// f(i + 1)`.
///
/// To prove inductive steps downward from the base case, the caller
/// must establish that, for any `i`, `is_le(i, 0)` implies `f(i) ==>
/// f(i - 1)`.
pub proof fn lemma_mul_induction_auto(x: int, f: spec_fn(int) -> bool)
requires
mul_auto() ==> {
&&& f(0)
&&& (forall|i| #[trigger] is_le(0, i) && f(i) ==> f(i + 1))
&&& (forall|i| #[trigger] is_le(i, 0) && f(i) ==> f(i - 1))
},
ensures
mul_auto(),
f(x),
{
broadcast use group_mul_properties_internal;
assert(forall|i| is_le(0, i) && #[trigger] f(i) ==> f(i + 1));
assert(forall|i| is_le(i, 0) && #[trigger] f(i) ==> f(i - 1));
lemma_mul_induction(f);
}
/// This utility function helps prove a mathematical property by
/// induction. The caller supplies an integer predicate `f`, proves
/// the predicate holds in the base case of 0, and proves correctness
/// of inductive steps both upward and downward from the base case.
/// This lemma invokes induction to establish that the predicate holds
/// for all integers.
///
/// To prove inductive steps upward from the base case, the caller
/// must establish that, for any `i`, `is_le(0, i)` implies `f(i) ==>
/// f(i + 1)`.
///
/// To prove inductive steps downward from the base case, the caller
/// must establish that, for any `i`, `is_le(i, 0)` implies `f(i) ==>
/// f(i - 1)`.
pub proof fn lemma_mul_induction_auto_forall(f: spec_fn(int) -> bool)
requires
mul_auto() ==> {
&&& f(0)
&&& (forall|i| #[trigger] is_le(0, i) && f(i) ==> f(i + 1))
&&& (forall|i| #[trigger] is_le(i, 0) && f(i) ==> f(i - 1))
},
ensures
mul_auto(),
forall|i| #[trigger] f(i),
{
assert(mul_auto()) by {
lemma_mul_induction_auto(0, f);
}
assert forall|i| #[trigger] f(i) by {
lemma_mul_induction_auto(i, f);
}
}
} // verus!