1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
use core::marker;

#[allow(unused_imports)]
use super::map::*;
#[cfg(verus_keep_ghost)]
use super::math::clip;
#[cfg(verus_keep_ghost)]
use super::math::min;
#[allow(unused_imports)]
use super::pervasive::*;
#[allow(unused_imports)]
use super::prelude::*;
#[allow(unused_imports)]
use super::set::*;

verus! {

/// `Multiset<V>` is an abstract multiset type for specifications.
///
/// `Multiset<V>` can be encoded as a (total) map from elements to natural numbers,
/// where the number of nonzero entries is finite.
///
/// Multisets can be constructed in a few different ways:
///  * [`Multiset::empty()`] constructs an empty multiset.
///  * [`Multiset::singleton`] constructs a multiset that contains a single element with multiplicity 1.
///  * [`Multiset::new`] constructs a multiset from a map of elements to multiplicities.
///  * By manipulating existings multisets with [`Multiset::add`], [`Multiset::insert`],
///    [`Multiset::sub`], [`Multiset::remove`], [`Multiset::update`], or [`Multiset::filter`].
///  * TODO: `multiset!` constructor macro, multiset from set, from map, etc.
///
/// To prove that two multisets are equal, it is usually easiest to use the
/// extensionality operator `=~=`.
// We could in principle implement the Multiset via an inductive datatype
// and so we can mark its type argument as accept_recursive_types.
// Note: Multiset is finite (in contrast to Set, Map, which are infinite) because it
// isn't entirely obvious how to represent an infinite multiset in the case where
// a single value (v: V) has an infinite multiplicity. It seems to require either:
//   (1) representing multiplicity by an ordinal or cardinal or something
//   (2) limiting each multiplicity to be finite
// (1) would be complicated and it's not clear what the use would be; (2) has some
// weird properties (e.g., you can't in general define a multiset `map` function
// since it might map an infinite number of elements to the same one).
#[verifier::external_body]
#[verifier::ext_equal]
#[verifier::accept_recursive_types(V)]
pub struct Multiset<V> {
    dummy: marker::PhantomData<V>,
}

impl<V> Multiset<V> {
    /// Returns the _count_, or _multiplicity_ of a single value within the multiset.
    pub spec fn count(self, value: V) -> nat;

    /// The total size of the multiset, i.e., the sum of all multiplicities over all values.
    pub spec fn len(self) -> nat;

    /// An empty multiset.
    pub spec fn empty() -> Self;

    /// Creates a multiset whose elements are given by the domain of the map `m` and whose
    /// multiplicities are given by the corresponding values of `m[element]`. The map `m`
    /// must be finite, or else this multiset is arbitrary.
    pub open spec fn from_map(m: Map<V, nat>) -> Self;

    #[cfg_attr(not(verus_verify_core), deprecated = "use from_map instead")]
    pub open spec fn new(m: Map<V, nat>) -> Self {
        Self::from_map(m)
    }

    pub open spec fn from_set(m: Set<V>) -> Self {
        Self::from_map(Map::new(|k| m.contains(k), |v| 1))
    }

    /// A singleton multiset, i.e., a multiset with a single element of multiplicity 1.
    pub spec fn singleton(v: V) -> Self;

    /// Takes the union of two multisets. For a given element, its multiplicity in
    /// the resulting multiset is the sum of its multiplicities in the operands.
    pub spec fn add(self, m2: Self) -> Self;

    /// Takes the difference of two multisets.
    /// The multiplicities of `m2` are subtracted from those of `self`; if any element
    /// occurs more in `m2` then the resulting multiplicity bottoms out at 0.
    /// (See [`axiom_multiset_sub`] for the precise definition.)
    ///
    /// Note in particular that `self == self.sub(m).add(m)` only holds if
    /// `m` is included in `self`.
    pub spec fn sub(self, m2: Self) -> Self;

    /// Inserts one instance the value `v` into the multiset.
    ///
    /// This always increases the total size of the multiset by 1.
    pub open spec fn insert(self, v: V) -> Self {
        self.add(Self::singleton(v))
    }

    /// Removes one instance of the value `v` from the multiset.
    ///
    /// If `v` was absent from the multiset, then the multiset is unchanged.
    pub open spec fn remove(self, v: V) -> Self {
        self.sub(Self::singleton(v))
    }

    /// Updates the multiplicity of the value `v` in the multiset to `mult`.
    pub open spec fn update(self, v: V, mult: nat) -> Self {
        let map = Map::new(
            |key: V| (self.contains(key) || key == v),
            |key: V|
                if key == v {
                    mult
                } else {
                    self.count(key)
                },
        );
        Self::from_map(map)
    }

    /// Returns `true` is the left argument is contained in the right argument,
    /// that is, if for each value `v`, the number of occurences in the left
    /// is at most the number of occurences in the right.
    pub open spec fn subset_of(self, m2: Self) -> bool {
        forall|v: V| self.count(v) <= m2.count(v)
    }

    #[verifier::inline]
    #[cfg_attr(not(verus_verify_core), deprecated = "use m1.subset_of(m2) or m1 <= m2 instead")]
    pub open spec fn le(self, m2: Self) -> bool {
        self.subset_of(m2)
    }

    #[verifier::inline]
    pub open spec fn spec_le(self, m2: Self) -> bool {
        self.subset_of(m2)
    }

    /// DEPRECATED: use =~= or =~~= instead.
    /// Returns true if the two multisets are pointwise equal, i.e.,
    /// for every value `v: V`, the counts are the same in each multiset.
    /// This is equivalent to the multisets actually being equal
    /// by [`axiom_multiset_ext_equal`].
    ///
    /// To prove that two maps are equal via extensionality, it may be easier
    /// to use the general-purpose `=~=` or `=~~=` or
    /// to use the [`assert_multisets_equal!`] macro, rather than using `ext_equal` directly.
    #[cfg_attr(not(verus_verify_core), deprecated = "use =~= or =~~= instead")]
    pub open spec fn ext_equal(self, m2: Self) -> bool {
        self =~= m2
    }

    // TODO define this in terms of a more general constructor?
    pub spec fn filter(self, f: impl Fn(V) -> bool) -> Self;

    /// Chooses an arbitrary value of the multiset.
    ///
    /// This is often useful for proofs by induction.
    ///
    /// (Note that, although the result is arbitrary, it is still a _deterministic_ function
    /// like any other `spec` function.)
    pub open spec fn choose(self) -> V {
        choose|v: V| self.count(v) > 0
    }

    /// Predicate indicating if the multiset contains the given value.
    pub open spec fn contains(self, v: V) -> bool {
        self.count(v) > 0
    }

    /// Predicate indicating if the set contains the given element: supports `self has a` syntax.
    #[verifier::inline]
    pub open spec fn spec_has(self, v: V) -> bool {
        self.contains(v)
    }

    /// Returns a multiset containing the lower count of a given element
    /// between the two sets. In other words, returns a multiset with only
    /// the elements that "overlap".
    pub open spec fn intersection_with(self, other: Self) -> Self {
        let m = Map::<V, nat>::new(
            |v: V| self.contains(v),
            |v: V| min(self.count(v) as int, other.count(v) as int) as nat,
        );
        Self::from_map(m)
    }

    /// Returns a multiset containing the difference between the count of a
    /// given element of the two sets.
    pub open spec fn difference_with(self, other: Self) -> Self {
        let m = Map::<V, nat>::new(
            |v: V| self.contains(v),
            |v: V| clip(self.count(v) - other.count(v)),
        );
        Self::from_map(m)
    }

    /// Returns true if there exist no elements that have a count greater
    /// than 0 in both multisets. In other words, returns true if the two
    /// multisets have no elements in common.
    pub open spec fn is_disjoint_from(self, other: Self) -> bool {
        forall|x: V| self.count(x) == 0 || other.count(x) == 0
    }

    /// Returns the set of all elements that have a count greater than 0
    pub open spec fn dom(self) -> Set<V> {
        Set::new(|v: V| self.count(v) > 0)
    }
}

// Specification of `empty`
/// The empty multiset maps every element to multiplicity 0
pub broadcast proof fn axiom_multiset_empty<V>(v: V)
    ensures
        #[trigger] Multiset::empty().count(v) == 0,
{
    admit();
}

// This verified lemma used to be an axiom in the Dafny prelude
/// A multiset is equivalent to the empty multiset if and only if it has length 0.
/// If the multiset has length greater than 0, then there exists some element in the
/// multiset that has a count greater than 0.
pub proof fn lemma_multiset_empty_len<V>(m: Multiset<V>)
    ensures
        (m.len() == 0 <==> m =~= Multiset::empty()) && (m.len() > 0 ==> exists|v: V|
            0 < m.count(v)),
{
    admit();
}

// Specifications of `from_map`
/// A call to Multiset::new with input map `m` will return a multiset that maps
/// value `v` to multiplicity `m[v]` if `v` is in the domain of `m`.
pub broadcast proof fn axiom_multiset_contained<V>(m: Map<V, nat>, v: V)
    requires
        m.dom().finite(),
        m.dom().contains(v),
    ensures
        #[trigger] Multiset::from_map(m).count(v) == m[v],
{
    admit();
}

/// A call to Multiset::new with input map `m` will return a multiset that maps
/// value `v` to multiplicity 0 if `v` is not in the domain of `m`.
pub broadcast proof fn axiom_multiset_new_not_contained<V>(m: Map<V, nat>, v: V)
    requires
        m.dom().finite(),
        !m.dom().contains(v),
    ensures
        #[trigger] Multiset::from_map(m).count(v) == 0,
{
    admit();
}

// Specification of `singleton`
/// A call to Multiset::singleton with input value `v` will return a multiset that maps
/// value `v` to multiplicity 1.
pub broadcast proof fn axiom_multiset_singleton<V>(v: V)
    ensures
        (#[trigger] Multiset::singleton(v)).count(v) == 1,
{
    admit();
}

/// A call to Multiset::singleton with input value `v` will return a multiset that maps
/// any value other than `v` to 0
pub broadcast proof fn axiom_multiset_singleton_different<V>(v: V, w: V)
    ensures
        v != w ==> #[trigger] Multiset::singleton(v).count(w) == 0,
{
    admit();
}

// Specification of `add`
/// The count of value `v` in the multiset `m1.add(m2)` is equal to the sum of the
/// counts of `v` in `m1` and `m2` individually.
pub broadcast proof fn axiom_multiset_add<V>(m1: Multiset<V>, m2: Multiset<V>, v: V)
    ensures
        #[trigger] m1.add(m2).count(v) == m1.count(v) + m2.count(v),
{
    admit();
}

// Specification of `sub`
/// The count of value `v` in the multiset `m1.sub(m2)` is equal to the difference between the
/// count of `v` in `m1` and `m2` individually. However, the difference is cut off at 0 and
/// cannot be negative.
pub broadcast proof fn axiom_multiset_sub<V>(m1: Multiset<V>, m2: Multiset<V>, v: V)
    ensures
        #[trigger] m1.sub(m2).count(v) == if m1.count(v) >= m2.count(v) {
            m1.count(v) - m2.count(v)
        } else {
            0
        },
{
    admit();
}

// Extensional equality
/// Two multisets are equivalent if and only if they have the same count for every value.
pub broadcast proof fn axiom_multiset_ext_equal<V>(m1: Multiset<V>, m2: Multiset<V>)
    ensures
        #[trigger] (m1 =~= m2) <==> (forall|v: V| m1.count(v) == m2.count(v)),
{
    admit();
}

pub broadcast proof fn axiom_multiset_ext_equal_deep<V>(m1: Multiset<V>, m2: Multiset<V>)
    ensures
        #[trigger] (m1 =~~= m2) <==> m1 =~= m2,
{
    admit();
}

// Specification of `len`
/// The length of the empty multiset is 0.
pub broadcast proof fn axiom_len_empty<V>()
    ensures
        (#[trigger] Multiset::<V>::empty().len()) == 0,
{
    admit();
}

/// The length of a singleton multiset is 1.
pub broadcast proof fn axiom_len_singleton<V>(v: V)
    ensures
        (#[trigger] Multiset::<V>::singleton(v).len()) == 1,
{
    admit();
}

/// The length of the addition of two multisets is equal to the sum of the lengths of each individual multiset.
pub broadcast proof fn axiom_len_add<V>(m1: Multiset<V>, m2: Multiset<V>)
    ensures
        (#[trigger] m1.add(m2).len()) == m1.len() + m2.len(),
{
    admit();
}

// TODO could probably prove this theorem.
/// The length of the subtraction of two multisets is equal to the difference between the lengths of each individual multiset.
pub broadcast proof fn axiom_len_sub<V>(m1: Multiset<V>, m2: Multiset<V>)
    requires
        m2.subset_of(m1),
    ensures
        (#[trigger] m1.sub(m2).len()) == m1.len() - m2.len(),
{
    admit();
}

/// The count for any given value `v` in a multiset `m` must be less than or equal to the length of `m`.
pub broadcast proof fn axiom_count_le_len<V>(m: Multiset<V>, v: V)
    ensures
        #[trigger] m.count(v) <= #[trigger] m.len(),
{
    admit();
}

// Specification of `filter`
/// For a given value `v` and boolean predicate `f`, if `f(v)` is true, then the count of `v` in
/// `m.filter(f)` is the same as the count of `v` in `m`. Otherwise, the count of `v` in `m.filter(f)` is 0.
pub broadcast proof fn axiom_filter_count<V>(m: Multiset<V>, f: spec_fn(V) -> bool, v: V)
    ensures
        (#[trigger] m.filter(f).count(v)) == if f(v) {
            m.count(v)
        } else {
            0
        },
{
    admit();
}

// Specification of `choose`
/// In a nonempty multiset `m`, the `choose` function will return a value that maps to a multiplicity
/// greater than 0 in `m`.
pub broadcast proof fn axiom_choose_count<V>(m: Multiset<V>)
    requires
        #[trigger] m.len() != 0,
    ensures
        #[trigger] m.count(m.choose()) > 0,
{
    admit();
}

// Axiom about finiteness
/// The domain of a multiset (the set of all values that map to a multiplicity greater than 0) is always finite.
// NB this axiom's soundness depends on the inability to learn anything about the entirety of
// Multiset::from_map.dom().
pub broadcast proof fn axiom_multiset_always_finite<V>(m: Multiset<V>)
    ensures
        #[trigger] m.dom().finite(),
{
    admit();
}

pub broadcast group group_multiset_axioms {
    axiom_multiset_empty,
    axiom_multiset_contained,
    axiom_multiset_new_not_contained,
    axiom_multiset_singleton,
    axiom_multiset_singleton_different,
    axiom_multiset_add,
    axiom_multiset_sub,
    axiom_multiset_ext_equal,
    axiom_multiset_ext_equal_deep,
    axiom_len_empty,
    axiom_len_singleton,
    axiom_len_add,
    axiom_len_sub,
    axiom_count_le_len,
    axiom_filter_count,
    axiom_choose_count,
    axiom_multiset_always_finite,
}

// Lemmas about `update`
/// The multiset resulting from updating a value `v` in a multiset `m` to multiplicity `mult` will
/// have a count of `mult` for `v`.
pub proof fn lemma_update_same<V>(m: Multiset<V>, v: V, mult: nat)
    ensures
        m.update(v, mult).count(v) == mult,
{
    broadcast use group_set_axioms, group_map_axioms, group_multiset_axioms;

    let map = Map::new(
        |key: V| (m.contains(key) || key == v),
        |key: V|
            if key == v {
                mult
            } else {
                m.count(key)
            },
    );
    assert(map.dom() =~= m.dom().insert(v));
}

/// The multiset resulting from updating a value `v1` in a multiset `m` to multiplicity `mult` will
/// not change the multiplicities of any other values in `m`.
pub proof fn lemma_update_different<V>(m: Multiset<V>, v1: V, mult: nat, v2: V)
    requires
        v1 != v2,
    ensures
        m.update(v1, mult).count(v2) == m.count(v2),
{
    broadcast use group_set_axioms, group_map_axioms, group_multiset_axioms;

    let map = Map::new(
        |key: V| (m.contains(key) || key == v1),
        |key: V|
            if key == v1 {
                mult
            } else {
                m.count(key)
            },
    );
    assert(map.dom() =~= m.dom().insert(v1));
}

// Lemmas about `insert`
// This verified lemma used to be an axiom in the Dafny prelude
/// If you insert element x into multiset m, then element y maps
/// to a count greater than 0 if and only if x==y or y already
/// mapped to a count greater than 0 before the insertion of x.
pub proof fn lemma_insert_containment<V>(m: Multiset<V>, x: V, y: V)
    ensures
        0 < m.insert(x).count(y) <==> x == y || 0 < m.count(y),
{
    broadcast use group_multiset_axioms;

}

// This verified lemma used to be an axiom in the Dafny prelude
/// Inserting an element `x` into multiset `m` will increase the count of `x` in `m` by 1.
pub proof fn lemma_insert_increases_count_by_1<V>(m: Multiset<V>, x: V)
    ensures
        m.insert(x).count(x) == m.count(x) + 1,
{
    broadcast use group_multiset_axioms;

}

// This verified lemma used to be an axiom in the Dafny prelude
/// If multiset `m` maps element `y` to a multiplicity greater than 0, then inserting any element `x`
/// into `m` will not cause `y` to map to a multiplicity of 0. This is a way of saying that inserting `x`
/// will not cause any counts to decrease, because it accounts both for when x == y and when x != y.
pub proof fn lemma_insert_non_decreasing<V>(m: Multiset<V>, x: V, y: V)
    ensures
        0 < m.count(y) ==> 0 < m.insert(x).count(y),
{
    broadcast use group_multiset_axioms;

}

// This verified lemma used to be an axiom in the Dafny prelude
/// Inserting an element `x` into a multiset `m` will not change the count of any other element `y` in `m`.
pub proof fn lemma_insert_other_elements_unchanged<V>(m: Multiset<V>, x: V, y: V)
    ensures
        x != y ==> m.count(y) == m.insert(x).count(y),
{
    broadcast use group_multiset_axioms;

}

// This verified lemma used to be an axiom in the Dafny prelude
/// Inserting an element `x` into a multiset `m` will increase the length of `m` by 1.
pub proof fn lemma_insert_len<V>(m: Multiset<V>, x: V)
    ensures
        m.insert(x).len() == m.len() + 1,
{
    broadcast use group_multiset_axioms;

}

// Lemmas about `intersection_with`
// This verified lemma used to be an axiom in the Dafny prelude
/// The multiplicity of an element `x` in the intersection of multisets `a` and `b` will be the minimum
/// count of `x` in either `a` or `b`.
pub proof fn lemma_intersection_count<V>(a: Multiset<V>, b: Multiset<V>, x: V)
    ensures
        a.intersection_with(b).count(x) == min(a.count(x) as int, b.count(x) as int),
{
    broadcast use group_set_axioms, group_map_axioms, group_multiset_axioms;

    let m = Map::<V, nat>::new(
        |v: V| a.contains(v),
        |v: V| min(a.count(v) as int, b.count(v) as int) as nat,
    );
    assert(m.dom() =~= a.dom());
}

// This verified lemma used to be an axiom in the Dafny prelude
/// Taking the intersection of multisets `a` and `b` and then taking the resulting multiset's intersection
/// with `b` again is the same as just taking the intersection of `a` and `b` once.
pub proof fn lemma_left_pseudo_idempotence<V>(a: Multiset<V>, b: Multiset<V>)
    ensures
        a.intersection_with(b).intersection_with(b) =~= a.intersection_with(b),
{
    broadcast use group_multiset_axioms;

    assert forall|x: V| #[trigger]
        a.intersection_with(b).count(x) == min(a.count(x) as int, b.count(x) as int) by {
        lemma_intersection_count(a, b, x);
    }
    assert forall|x: V| #[trigger]
        a.intersection_with(b).intersection_with(b).count(x) == min(
            a.count(x) as int,
            b.count(x) as int,
        ) by {
        lemma_intersection_count(a.intersection_with(b), b, x);
        assert(min(min(a.count(x) as int, b.count(x) as int) as int, b.count(x) as int) == min(
            a.count(x) as int,
            b.count(x) as int,
        ));
    }
}

// This verified lemma used to be an axiom in the Dafny prelude
/// Taking the intersection of multiset `a` with the result of taking the intersection of `a` and `b`
/// is the same as just taking the intersection of `a` and `b` once.
pub proof fn lemma_right_pseudo_idempotence<V>(a: Multiset<V>, b: Multiset<V>)
    ensures
        a.intersection_with(a.intersection_with(b)) =~= a.intersection_with(b),
{
    broadcast use group_multiset_axioms;

    assert forall|x: V| #[trigger]
        a.intersection_with(b).count(x) == min(a.count(x) as int, b.count(x) as int) by {
        lemma_intersection_count(a, b, x);
    }
    assert forall|x: V| #[trigger]
        a.intersection_with(a.intersection_with(b)).count(x) == min(
            a.count(x) as int,
            b.count(x) as int,
        ) by {
        lemma_intersection_count(a, a.intersection_with(b), x);
        assert(min(a.count(x) as int, min(a.count(x) as int, b.count(x) as int) as int) == min(
            a.count(x) as int,
            b.count(x) as int,
        ));
    }
}

// Lemmas about `difference_with`
// This verified lemma used to be an axiom in the Dafny prelude
/// The multiplicity of an element `x` in the difference of multisets `a` and `b` will be
/// equal to the difference of the counts of `x` in `a` and `b`, or 0 if this difference is negative.
pub proof fn lemma_difference_count<V>(a: Multiset<V>, b: Multiset<V>, x: V)
    ensures
        a.difference_with(b).count(x) == clip(a.count(x) - b.count(x)),
{
    broadcast use group_set_axioms, group_map_axioms, group_multiset_axioms;

    let m = Map::<V, nat>::new(|v: V| a.contains(v), |v: V| clip(a.count(v) - b.count(v)));
    assert(m.dom() =~= a.dom());
}

// This verified lemma used to be an axiom in the Dafny prelude
/// If the multiplicity of element `x` is less in multiset `a` than in multiset `b`, then the multiplicity
/// of `x` in the difference of `a` and `b` will be 0.
pub proof fn lemma_difference_bottoms_out<V>(a: Multiset<V>, b: Multiset<V>, x: V)
    ensures
        a.count(x) <= b.count(x) ==> a.difference_with(b).count(x) == 0,
{
    broadcast use group_multiset_axioms;

    lemma_difference_count(a, b, x);
}

#[macro_export]
macro_rules! assert_multisets_equal {
    [$($tail:tt)*] => {
        ::builtin_macros::verus_proof_macro_exprs!($crate::vstd::multiset::assert_multisets_equal_internal!($($tail)*))
    };
}

#[macro_export]
macro_rules! assert_multisets_equal_internal {
    (::builtin::spec_eq($m1:expr, $m2:expr)) => {
        $crate::vstd::multiset::assert_multisets_equal_internal!($m1, $m2)
    };
    (::builtin::spec_eq($m1:expr, $m2:expr), $k:ident $( : $t:ty )? => $bblock:block) => {
        $crate::vstd::multiset::assert_multisets_equal_internal!($m1, $m2, $k $( : $t )? => $bblock)
    };
    (crate::builtin::spec_eq($m1:expr, $m2:expr)) => {
        $crate::vstd::multiset::assert_multisets_equal_internal!($m1, $m2)
    };
    (crate::builtin::spec_eq($m1:expr, $m2:expr), $k:ident $( : $t:ty )? => $bblock:block) => {
        $crate::vstd::multiset::assert_multisets_equal_internal!($m1, $m2, $k $( : $t )? => $bblock)
    };
    ($m1:expr, $m2:expr $(,)?) => {
        $crate::vstd::multiset::assert_multisets_equal_internal!($m1, $m2, key => { })
    };
    ($m1:expr, $m2:expr, $k:ident $( : $t:ty )? => $bblock:block) => {
        #[verifier::spec] let m1 = $m1;
        #[verifier::spec] let m2 = $m2;
        $crate::vstd::prelude::assert_by($crate::vstd::prelude::equal(m1, m2), {
            $crate::vstd::prelude::assert_forall_by(|$k $( : $t )?| {
                $crate::vstd::prelude::ensures([
                    $crate::vstd::prelude::equal(m1.count($k), m2.count($k))
                ]);
                { $bblock }
            });
            $crate::vstd::prelude::assert_($crate::vstd::prelude::ext_equal(m1, m2));
        });
    }
}

/// Properties of multisets from the Dafny prelude (which were axioms in Dafny, but proven here in Verus)
pub proof fn lemma_multiset_properties<V>()
    ensures
        forall|m: Multiset<V>, v: V, mult: nat| #[trigger] m.update(v, mult).count(v) == mult,  //from lemma_update_same
        forall|m: Multiset<V>, v1: V, mult: nat, v2: V|
            v1 != v2 ==> #[trigger] m.update(v1, mult).count(v2) == m.count(v2),  //from lemma_update_different
        forall|m: Multiset<V>|
            (#[trigger] m.len() == 0 <==> m =~= Multiset::empty()) && (#[trigger] m.len() > 0
                ==> exists|v: V| 0 < m.count(v)),  //from lemma_multiset_empty_len
        forall|m: Multiset<V>, x: V, y: V|
            0 < #[trigger] m.insert(x).count(y) <==> x == y || 0 < m.count(y),  //from lemma_insert_containment
        forall|m: Multiset<V>, x: V| #[trigger] m.insert(x).count(x) == m.count(x) + 1,  //from lemma_insert_increases_count_by_1
        forall|m: Multiset<V>, x: V, y: V| 0 < m.count(y) ==> 0 < #[trigger] m.insert(x).count(y),  //from lemma_insert_non_decreasing
        forall|m: Multiset<V>, x: V, y: V|
            x != y ==> #[trigger] m.count(y) == #[trigger] m.insert(x).count(y),  //from lemma_insert_other_elements_unchanged
        forall|m: Multiset<V>, x: V| #[trigger] m.insert(x).len() == m.len() + 1,  //from lemma_insert_len
        forall|a: Multiset<V>, b: Multiset<V>, x: V| #[trigger]
            a.intersection_with(b).count(x) == min(a.count(x) as int, b.count(x) as int),  //from lemma_intersection_count
        forall|a: Multiset<V>, b: Multiset<V>| #[trigger]
            a.intersection_with(b).intersection_with(b) == a.intersection_with(b),  //from lemma_left_pseudo_idempotence
        forall|a: Multiset<V>, b: Multiset<V>| #[trigger]
            a.intersection_with(a.intersection_with(b)) == a.intersection_with(b),  //from lemma_right_pseudo_idempotence
        forall|a: Multiset<V>, b: Multiset<V>, x: V| #[trigger]
            a.difference_with(b).count(x) == clip(a.count(x) - b.count(x)),  //from lemma_difference_count
        forall|a: Multiset<V>, b: Multiset<V>, x: V| #[trigger]
            a.count(x) <= #[trigger] b.count(x) ==> (#[trigger] a.difference_with(b)).count(x)
                == 0,  //from lemma_difference_bottoms_out
{
    broadcast use group_multiset_axioms;

    assert forall|m: Multiset<V>, v: V, mult: nat| #[trigger]
        m.update(v, mult).count(v) == mult by {
        lemma_update_same(m, v, mult);
    }
    assert forall|m: Multiset<V>, v1: V, mult: nat, v2: V| v1 != v2 implies #[trigger] m.update(
        v1,
        mult,
    ).count(v2) == m.count(v2) by {
        lemma_update_different(m, v1, mult, v2);
    }
    assert forall|a: Multiset<V>, b: Multiset<V>, x: V| #[trigger]
        a.intersection_with(b).count(x) == min(a.count(x) as int, b.count(x) as int) by {
        lemma_intersection_count(a, b, x);
    }
    assert forall|a: Multiset<V>, b: Multiset<V>| #[trigger]
        a.intersection_with(b).intersection_with(b) == a.intersection_with(b) by {
        lemma_left_pseudo_idempotence(a, b);
    }
    assert forall|a: Multiset<V>, b: Multiset<V>| #[trigger]
        a.intersection_with(a.intersection_with(b)) == a.intersection_with(b) by {
        lemma_right_pseudo_idempotence(a, b);
    }
    assert forall|a: Multiset<V>, b: Multiset<V>, x: V| #[trigger]
        a.difference_with(b).count(x) == clip(a.count(x) - b.count(x)) by {
        lemma_difference_count(a, b, x);
    }
}

#[doc(hidden)]
pub use assert_multisets_equal_internal;
pub use assert_multisets_equal;

} // verus!