1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
#![cfg_attr(
not(verus_verify_core),
deprecated = "The vstd::ptr version of PPtr is deprecated. Use either:\n -- `PPtr<T>` in vstd::simple_pptr (for simple use-cases, with fixed-size typed heap allocations)\n -- `*mut T` with vstd::raw_ptr (for more advanced use-cases)"
)]
#![allow(unused_imports)]
#![allow(deprecated)]
use alloc::alloc::Layout;
use core::{marker, mem, mem::MaybeUninit};
use super::layout::*;
use super::modes::*;
use super::pervasive::*;
use super::prelude::*;
use super::*;
use builtin::*;
use builtin_macros::*;
#[cfg(verus_keep_ghost)]
use super::set_lib::set_int_range;
verus! {
/// `PPtr<V>` (which stands for "permissioned pointer")
/// is a wrapper around a raw pointer to `V` on the heap.
///
/// Technically, it is a wrapper around `*mut mem::MaybeUninit<V>`, that is, the object
/// it points to may be uninitialized.
///
/// In order to access (read or write) the value behind the pointer, the user needs
/// a special _ghost permission token_, [`PointsTo<V>`](PointsTo). This object is `tracked`,
/// which means that it is "only a proof construct" that does not appear in code,
/// but its uses _are_ checked by the borrow-checker. This ensures memory safety,
/// data-race-freedom, prohibits use-after-free, etc.
///
/// ### PointsTo objects.
///
/// The [`PointsTo`] object represents both the ability to access the data behind the
/// pointer _and_ the ability to free it (return it to the memory allocator).
///
/// In particular:
/// * When the user owns a `PointsTo<V>` object associated to a given pointer,
/// they can either read or write its contents, or deallocate ("free") it.
/// * When the user has a shared borrow, `&PointsTo<V>`, they can read
/// the contents (i.e., obtained a shared borrow `&V`).
///
/// The `perm: PointsTo<V>` object tracks two pieces of data:
/// * `perm.pptr` is the pointer that the permission is associated to,
/// given by [`ptr.id()`](PPtr::id).
/// * `perm.value` tracks the data that is behind the pointer. Thereby:
/// * When the user uses the permission to _read_ a value, they always
/// read the value as given by the `perm.value`.
/// * When the user uses the permission to _write_ a value, the `perm.value`
/// data is updated.
///
/// For those familiar with separation logic, the `PointsTo` object plays a role
/// similar to that of the "points-to" operator, _ptr_ ↦ _value_.
///
/// ### Differences from `PCell`.
///
/// `PPtr` is similar to [`cell::PCell`], but has a few key differences:
/// * In `PCell<T>`, the type `T` is placed internally to the `PCell`, whereas with `PPtr`,
/// the type `T` is placed at some location on the heap.
/// * Since `PPtr` is just a pointer (represented by an integer), it can be `Copy`.
/// * The `ptr::PointsTo` token represents not just the permission to read/write
/// the contents, but also to deallocate.
///
/// ### Example (TODO)
// Notes about pointer provenance:
//
// "Pointer provenance" is this complicated subject which is a necessary
// evil if you want to understand the abstract machine semantics of a language
// with pointers and what is or is not UB with int-to-pointer casts.
//
// See this series of blog posts for some introduction:
// https://www.ralfj.de/blog/2022/04/11/provenance-exposed.html
//
// Here in Verus, where code is forced to be verified, we want to tell
// a much simpler story, which is the following:
//
// ***** VERUS POINTER MODEL *****
// "Provenance" comes from the `tracked ghost` PointsTo object.
// *******************************
//
// Pretty simple, right?
//
// Of course, this trusted pointer library still needs to actually run and
// be sound in the Rust backend.
// Rust's abstract pointer model is unchanged, and it doesn't know anything
// about Verus's special ghost `PointsTo` object, which gets erased, anyway.
//
// Maybe someday the ghost PointsTo model will become a real
// memory model. That isn't true today.
// So we still need to know something about actual, real memory models that
// are used right now in order to implement this API soundly.
//
// Our goal is to allow the *user of Verus* to think in terms of the
// VERUS POINTER MODEL where provenance is tracked via the `PointsTo` object.
// The rest of this is just details for the trusted implementation of PPtr
// that will be sound in the Rust backend.
//
// In the "PNVI-ae-udi" model:
// * A ptr->int cast "exposes" a pointer (adding it some global list in the
// abstract machine)
// * An int->ptr cast acquires the provenance of that pointer only if it
// was previously exposed.
//
// The "tower of weakenings", however,
// (see https://gankra.github.io/blah/tower-of-weakenings/)
// proposes a stricter model called "Strict Provenance".
// This basically forbids exposing and requires provenance to always be tracked.
//
// If possible, it would be nice to stick to this stricter model, but it isn't necessary.
//
// Unfortunately, it's not possible. The Strict Provenance requires "provenance" to be
// tracked through non-ghost pointers. We can't use our ghost objects to track provenance
// in general while staying consistent with Strict Provenance.
//
// We have two options:
//
// 1. Just forbid int->ptr conversions
// 2. Always "expose" every PPtr when it's created, in order to definitely be safe
// under PNVI-ae-udi.
//
// However, int->ptr conversions ought to be allowed in the VERUS POINTER MODEL,
// so I'm going with (2) here.
//
// TODO reconsider: Is this plan actually good? Exposing all pointers has the potential
// to ruin optimizations. If the plan is bad, and we want to avoid the cost of
// "expose-everywhere", we may need to actually track provenance as part
// of the specification of PPtr.
//
// Perhaps what we could do is specify a low-level pointer library with
// strict provenance rules + exposed pointers,
// and then verify user libraries on top of that?
// TODO implement: borrow_mut; figure out Drop, see if we can avoid leaking?
// TODO just replace this with `*mut V`
#[repr(C)]
#[verifier::accept_recursive_types(V)]
pub struct PPtr<V> {
pub uptr: *mut V,
}
// PPtr is always safe to Send/Sync. It's the PointsTo object where Send/Sync matters.
// It doesn't matter if you send the pointer to another thread if you can't access it.
#[verifier::external]
unsafe impl<T> Sync for PPtr<T> {
}
#[verifier::external]
unsafe impl<T> Send for PPtr<T> {
}
// TODO some of functionality could have V: ?Sized
/// A `tracked` ghost object that gives the user permission to dereference a pointer
/// for reading or writing, or to free the memory at that pointer.
///
/// The meaning of a `PointsTo` object is given by the data in its
/// `View` object, [`PointsToData`].
///
/// See the [`PPtr`] documentation for more details.
#[verifier::external_body]
#[verifier::reject_recursive_types_in_ground_variants(V)]
pub tracked struct PointsTo<V> {
phantom: marker::PhantomData<V>,
no_copy: NoCopy,
}
/// Represents the meaning of a [`PointsTo`] object.
pub ghost struct PointsToData<V> {
/// Indicates that this token is for a pointer `ptr: PPtr<V>`
/// such that [`ptr.id()`](PPtr::id) equal to this value.
pub pptr: int,
/// Indicates that this token gives the ability to read a value `V` from memory.
/// When `None`, it indicates that the memory is uninitialized.
pub value: Option<V>,
}
// TODO add similiar height axioms for other ghost objects
pub broadcast proof fn points_to_height_axiom<V>(points_to: PointsTo<V>)
ensures
#[trigger] is_smaller_than(points_to@, points_to),
{
admit();
}
pub broadcast group group_ptr_axioms {
points_to_height_axiom,
}
/// Points to uninitialized memory.
#[verifier::external_body]
pub tracked struct PointsToRaw {
no_copy: NoCopy,
}
#[verifier::external_body]
#[verifier::reject_recursive_types_in_ground_variants(V)]
pub tracked struct Dealloc<V> {
phantom: marker::PhantomData<V>,
no_copy: NoCopy,
}
pub ghost struct DeallocData {
pub pptr: int,
}
#[verifier::external_body]
pub tracked struct DeallocRaw {
no_copy: NoCopy,
}
pub ghost struct DeallocRawData {
pub pptr: int,
pub size: nat,
pub align: nat,
}
impl<V> PointsTo<V> {
pub spec fn view(self) -> PointsToData<V>;
/// Any dereferenceable pointer must be non-null.
/// (Note that null pointers _do_ exist and are representable by `PPtr`;
/// however, it is not possible to obtain a `PointsTo` token for
/// any such a pointer.)
#[verifier::external_body]
pub proof fn is_nonnull(tracked &self)
ensures
self@.pptr != 0,
{
unimplemented!();
}
#[verifier::external_body]
pub proof fn leak_contents(tracked &mut self)
ensures
self@.pptr == old(self)@.pptr && self@.value.is_None(),
{
unimplemented!();
}
}
impl<V> PointsTo<V> {
#[verifier::external_body]
pub proof fn into_raw(tracked self) -> (tracked points_to_raw: PointsToRaw)
requires
self@.value.is_None(),
ensures
points_to_raw.is_range(self@.pptr, size_of::<V>() as int),
is_sized::<V>(),
{
unimplemented!();
}
#[verifier::external_body]
pub proof fn borrow_raw(tracked &self) -> (tracked points_to_raw: &PointsToRaw)
requires
self@.value.is_None(),
ensures
points_to_raw.is_range(self@.pptr, size_of::<V>() as int),
is_sized::<V>(),
{
unimplemented!();
}
}
impl PointsToRaw {
pub spec fn view(self) -> Map<int, u8>;
pub open spec fn contains_range(self, start: int, len: int) -> bool {
set_int_range(start, start + len).subset_of(self@.dom())
}
pub open spec fn is_range(self, start: int, len: int) -> bool {
set_int_range(start, start + len) =~= self@.dom()
}
#[verifier::inline]
pub open spec fn spec_index(self, i: int) -> u8 {
self@[i]
}
#[verifier::external_body]
pub proof fn is_nonnull(tracked &self)
ensures
!self@.dom().contains(0),
{
unimplemented!();
}
#[verifier::external_body]
pub proof fn is_in_bounds(tracked &self)
ensures
forall|i: int| self@.dom().contains(i) ==> 0 < i <= usize::MAX,
{
unimplemented!();
}
#[verifier::external_body]
pub proof fn empty() -> (tracked points_to_raw: Self)
ensures
points_to_raw@ == Map::<int, u8>::empty(),
{
unimplemented!();
}
#[verifier::external_body]
pub proof fn into_typed<V>(tracked self, start: usize) -> (tracked points_to: PointsTo<V>)
requires
is_sized::<V>(),
start as int % align_of::<V>() as int == 0,
self.is_range(start as int, size_of::<V>() as int),
ensures
points_to@.pptr == start,
points_to@.value === None,
{
unimplemented!();
}
#[verifier::external_body]
pub proof fn borrow_typed<V>(tracked &self, start: int) -> (tracked points_to: &PointsTo<V>)
requires
is_sized::<V>(),
start % align_of::<V>() as int == 0,
self.contains_range(start, size_of::<V>() as int),
ensures
points_to@.pptr === start,
points_to@.value === None,
{
unimplemented!();
}
#[verifier::external_body]
pub proof fn join(tracked self, tracked other: Self) -> (tracked joined: Self)
ensures
self@.dom().disjoint(other@.dom()),
joined@ == self@.union_prefer_right(other@),
{
unimplemented!();
}
pub proof fn insert(tracked &mut self, tracked other: Self)
ensures
old(self)@.dom().disjoint(other@.dom()),
self@ == old(self)@.union_prefer_right(other@),
{
let tracked mut tmp = Self::empty();
tracked_swap(&mut tmp, self);
tmp = tmp.join(other);
tracked_swap(&mut tmp, self);
}
#[verifier::external_body]
pub proof fn borrow_join<'a>(tracked &'a self, tracked other: &'a Self) -> (tracked joined:
&'a Self)
ensures
(forall|i|
#![trigger self@.dom().contains(i), other@.dom().contains(i)]
self@.dom().contains(i) && other@.dom().contains(i) ==> self@[i] == other@[i]),
joined@ == self@.union_prefer_right(other@),
{
unimplemented!();
}
#[verifier::external_body]
pub proof fn split(tracked self, range: Set<int>) -> (tracked res: (Self, Self))
requires
range.subset_of(self@.dom()),
ensures
res.0@ == self@.restrict(range),
res.1@ == self@.remove_keys(range),
{
unimplemented!();
}
pub proof fn take(tracked &mut self, range: Set<int>) -> (tracked res: Self)
requires
range.subset_of(old(self)@.dom()),
ensures
res@ == old(self)@.restrict(range),
self@ == old(self)@.remove_keys(range),
{
let tracked mut tmp = Self::empty();
tracked_swap(&mut tmp, self);
let tracked (l, mut r) = tmp.split(range);
tracked_swap(&mut r, self);
l
}
#[verifier::external_body]
pub proof fn borrow_subset(tracked &self, range: Set<int>) -> (tracked res: &Self)
requires
range.subset_of(self@.dom()),
ensures
res@ == self@.restrict(range),
{
unimplemented!();
}
}
impl<V> Dealloc<V> {
pub spec fn view(self) -> DeallocData;
}
impl<V> Dealloc<V> {
#[verifier::external_body]
pub proof fn is_nonnull(tracked &self)
ensures
self@.pptr != 0,
{
unimplemented!();
}
#[verifier::external_body]
pub proof fn into_raw(tracked self) -> (tracked dealloc_raw: DeallocRaw)
ensures
dealloc_raw@.pptr === self@.pptr,
dealloc_raw@.size === size_of::<V>(),
dealloc_raw@.align === align_of::<V>(),
is_sized::<V>(),
{
unimplemented!();
}
#[verifier::external_body]
pub proof fn borrow_raw(tracked &self) -> (tracked dealloc_raw: &DeallocRaw)
ensures
dealloc_raw@.pptr === self@.pptr,
dealloc_raw@.size === size_of::<V>(),
dealloc_raw@.align === align_of::<V>(),
is_sized::<V>(),
{
unimplemented!();
}
}
impl DeallocRaw {
pub spec fn view(self) -> DeallocRawData;
#[verifier::external_body]
pub proof fn is_nonnull(tracked &self)
ensures
self@.pptr != 0,
{
unimplemented!();
}
#[verifier::external_body]
pub proof fn into_typed<V>(tracked self) -> (tracked dealloc: Dealloc<V>)
requires
is_sized::<V>(),
self@.size === size_of::<V>(),
self@.align === align_of::<V>(),
ensures
dealloc@.pptr === self@.pptr,
{
unimplemented!();
}
#[verifier::external_body]
pub proof fn borrow_typed<V>(tracked &self) -> (tracked dealloc: &Dealloc<V>)
requires
is_sized::<V>(),
self@.size === size_of::<V>(),
self@.align === align_of::<V>(),
ensures
dealloc@.pptr === self@.pptr,
{
unimplemented!();
}
}
impl<A> Clone for PPtr<A> {
#[verifier::external_body]
fn clone(&self) -> (s: Self)
ensures
s == *self,
{
PPtr { uptr: self.uptr }
}
}
impl<A> Copy for PPtr<A> {
}
impl<V> PPtr<V> {
/// Cast a pointer to an integer.
#[inline(always)]
#[verifier::external_body]
pub fn to_usize(&self) -> (u: usize)
ensures
u as int == self.id(),
{
self.uptr as usize
}
/// integer address of the pointer
pub spec fn id(&self) -> int;
/// Cast an integer to a pointer.
///
/// Note that this does _not_ require or ensure that the pointer is valid.
/// Of course, if the user creates an invalid pointer, they would still not be able to
/// create a valid [`PointsTo`] token for it, and thus they would never
/// be able to access the data behind the pointer.
///
/// This is analogous to normal Rust, where casting to a pointer is always possible,
/// but dereferencing a pointer is an `unsafe` operation.
/// In Verus, casting to a pointer is likewise always possible,
/// while dereferencing it is only allowed when the right preconditions are met.
#[inline(always)]
#[verifier::external_body]
pub fn from_usize(u: usize) -> (p: Self)
ensures
p.id() == u as int,
{
let uptr = u as *mut V;
PPtr { uptr }
}
/// Allocates heap memory for type `V`, leaving it uninitialized.
#[inline(always)]
#[verifier::external_body]
pub fn empty() -> (pt: (PPtr<V>, Tracked<PointsTo<V>>, Tracked<Dealloc<V>>))
ensures
pt.1@@ === (PointsToData { pptr: pt.0.id(), value: None }),
pt.2@@ === (DeallocData { pptr: pt.0.id() }),
opens_invariants none
{
let layout = Layout::new::<V>();
let size = layout.size();
let align = layout.align();
let (p, _, _) = PPtr::<V>::alloc(size, align);
(p, Tracked::assume_new(), Tracked::assume_new())
}
#[inline(always)]
#[verifier::external_body]
pub fn alloc(size: usize, align: usize) -> (pt: (
PPtr<V>,
Tracked<PointsToRaw>,
Tracked<DeallocRaw>,
))
requires
valid_layout(size, align),
ensures
pt.1@.is_range(pt.0.id(), size as int),
pt.2@@ === (DeallocRawData { pptr: pt.0.id(), size: size as nat, align: align as nat }),
pt.0.id() % align as int == 0,
opens_invariants none
{
// Add padding (this is to prevent the user from being able to "combine" allocations)
// Constructing the layout object might fail if the allocation becomes too big.
// The 'add' can't overflow, since we already know (size, align) is a valid layout.
let layout = Layout::from_size_align(size + align, align).unwrap();
let p = PPtr { uptr: unsafe { ::alloc::alloc::alloc(layout) as *mut V } };
// See explanation about exposing pointers, above
let _exposed_addr = p.uptr as usize;
(p, Tracked::assume_new(), Tracked::assume_new())
}
/// Moves `v` into the location pointed to by the pointer `self`.
/// Requires the memory to be uninitialized, and leaves it initialized.
///
/// In the ghost perspective, this updates `perm.value`
/// from `None` to `Some(v)`.
#[inline(always)]
#[verifier::external_body]
pub fn put(&self, Tracked(perm): Tracked<&mut PointsTo<V>>, v: V)
requires
self.id() === old(perm)@.pptr,
old(perm)@.value === None,
ensures
perm@.pptr === old(perm)@.pptr,
perm@.value === Some(v),
opens_invariants none
no_unwind
{
// See explanation about exposing pointers, above
let ptr = self.uptr as usize as *mut V;
unsafe {
// We use `write` here because it does not attempt to "drop" the memory at `*ptr`.
core::ptr::write(ptr, v);
}
}
/// Moves `v` out of the location pointed to by the pointer `self`
/// and returns it.
/// Requires the memory to be initialized, and leaves it uninitialized.
///
/// In the ghost perspective, this updates `perm.value`
/// from `Some(v)` to `None`,
/// while returning the `v` as an `exec` value.
#[inline(always)]
#[verifier::external_body]
pub fn take(&self, Tracked(perm): Tracked<&mut PointsTo<V>>) -> (v: V)
requires
self.id() === old(perm)@.pptr,
old(perm)@.value.is_Some(),
ensures
perm@.pptr === old(perm)@.pptr,
perm@.value === None,
v === old(perm)@.value.get_Some_0(),
opens_invariants none
no_unwind
{
// See explanation about exposing pointers, above
let ptr = self.uptr as usize as *mut V;
unsafe { core::ptr::read(ptr) }
}
/// Swaps the `in_v: V` passed in as an argument with the value in memory.
/// Requires the memory to be initialized, and leaves it initialized with the new value.
#[inline(always)]
#[verifier::external_body]
pub fn replace(&self, Tracked(perm): Tracked<&mut PointsTo<V>>, in_v: V) -> (out_v: V)
requires
self.id() === old(perm)@.pptr,
old(perm)@.value.is_Some(),
ensures
perm@.pptr === old(perm)@.pptr,
perm@.value === Some(in_v),
out_v === old(perm)@.value.get_Some_0(),
opens_invariants none
no_unwind
{
// See explanation about exposing pointers, above
let ptr = self.uptr as usize as *mut V;
unsafe {
let mut m = in_v;
mem::swap(&mut m, &mut *ptr);
m
}
}
/// Given a shared borrow of the `PointsTo<V>`, obtain a shared borrow of `V`.
// Note that `self` is just a pointer, so it doesn't need to outlive
// the returned borrow.
#[inline(always)]
#[verifier::external_body]
pub fn borrow<'a>(&self, Tracked(perm): Tracked<&'a PointsTo<V>>) -> (v: &'a V)
requires
self.id() === perm@.pptr,
perm@.value.is_Some(),
ensures
*v === perm@.value.get_Some_0(),
opens_invariants none
no_unwind
{
// See explanation about exposing pointers, above
let ptr = self.uptr as usize as *mut V;
unsafe { &*ptr }
}
/// Free the memory pointed to be `perm`.
/// Requires the memory to be uninitialized.
///
/// This consumes `perm`, since it will no longer be safe to access
/// that memory location.
#[inline(always)]
#[verifier::external_body]
pub fn dispose(
&self,
Tracked(perm): Tracked<PointsTo<V>>,
Tracked(dealloc): Tracked<Dealloc<V>>,
)
requires
self.id() === perm@.pptr,
perm@.value === None,
perm@.pptr == dealloc@.pptr,
opens_invariants none
{
unsafe {
let layout = alloc::alloc::Layout::for_value(&*self.uptr);
let size = layout.size();
let align = layout.align();
// Add the padding to match what we did in 'alloc'
let layout = Layout::from_size_align_unchecked(size + align, align);
::alloc::alloc::dealloc(self.uptr as *mut u8, layout);
}
}
#[inline(always)]
#[verifier::external_body]
pub fn dealloc(
&self,
size: usize,
align: usize,
Tracked(perm): Tracked<PointsToRaw>,
Tracked(dealloc): Tracked<DeallocRaw>,
)
requires
perm.is_range(self.id(), size as int),
dealloc@.pptr === self.id(),
dealloc@.size === size as nat,
dealloc@.align === align as nat,
opens_invariants none
{
unsafe {
// Since we have the Dealloc object, we know this is a valid layout
// and that it's safe to call 'deallocate'
// Remember to add the padding, like in `alloc`
let layout = Layout::from_size_align_unchecked(size + align, align);
::alloc::alloc::dealloc(self.uptr as *mut u8, layout);
}
}
//////////////////////////////////
// Verified library functions below here
/// Free the memory pointed to be `perm` and return the
/// value that was previously there.
/// Requires the memory to be initialized.
/// This consumes the [`PointsTo`] token, since the user is giving up
/// access to the memory by freeing it.
#[inline(always)]
pub fn into_inner(
self,
Tracked(perm): Tracked<PointsTo<V>>,
Tracked(dealloc): Tracked<Dealloc<V>>,
) -> (v: V)
requires
self.id() === perm@.pptr,
perm@.pptr == dealloc@.pptr,
perm@.value.is_Some(),
ensures
v === perm@.value.get_Some_0(),
opens_invariants none
{
let tracked mut perm = perm;
let v = self.take(Tracked(&mut perm));
self.dispose(Tracked(perm), Tracked(dealloc));
v
}
/// Allocates heap memory for type `V`, leaving it initialized
/// with the given value `v`.
#[inline(always)]
pub fn new(v: V) -> (pt: (PPtr<V>, Tracked<PointsTo<V>>, Tracked<Dealloc<V>>))
ensures
(pt.1@@ === PointsToData { pptr: pt.0.id(), value: Some(v) }),
(pt.2@@ === DeallocData { pptr: pt.0.id() }),
{
let (p, Tracked(mut t), Tracked(d)) = Self::empty();
p.put(Tracked(&mut t), v);
(p, Tracked(t), Tracked(d))
}
}
impl<V: Copy> PPtr<V> {
#[inline(always)]
pub fn write(&self, Tracked(perm): Tracked<&mut PointsTo<V>>, in_v: V)
requires
self.id() === old(perm)@.pptr,
ensures
perm@.pptr === old(perm)@.pptr,
perm@.value === Some(in_v),
opens_invariants none
no_unwind
{
proof {
perm.leak_contents();
}
self.put(Tracked(&mut *perm), in_v);
}
#[inline(always)]
pub fn read(&self, Tracked(perm): Tracked<&PointsTo<V>>) -> (out_v: V)
requires
self.id() === perm@.pptr,
perm@.value.is_Some(),
ensures
perm@.value === Some(out_v),
opens_invariants none
no_unwind
{
*self.borrow(Tracked(&*perm))
}
}
// Manipulating the contents in a PointsToRaw
impl PPtr<u8> {
#[cfg_attr(not(verus_keep_ghost), allow(unused_variables))]
#[verifier::external_body]
fn copy_nonoverlapping(
&self,
dst: PPtr<u8>,
count: usize,
perm_src: &PointsToRaw,
perm_dst: &mut PointsToRaw,
)
requires
perm_src.contains_range(self.id(), count as int),
old(perm_dst).contains_range(dst.id(), count as int),
ensures
perm_dst@ == old(perm_dst)@.union_prefer_right(
perm_src@.restrict(set_int_range(self.id(), self.id() + count)),
),
{
unsafe { core::ptr::copy_nonoverlapping(self.uptr, dst.uptr, count) }
}
#[cfg_attr(not(verus_keep_ghost), allow(unused_variables))]
#[verifier::external_body]
fn write_bytes(&self, val: u8, count: usize, perm: &mut PointsToRaw)
requires
old(perm).contains_range(self.id(), count as int),
ensures
perm@ == old(perm)@.union_prefer_right(
Map::new(
|addr| set_int_range(self.id(), self.id() + count).contains(addr),
|addr| val,
),
),
{
unsafe {
core::ptr::write_bytes::<u8>(self.uptr, val, count);
}
}
}
} // verus!