1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
use core::marker;
#[allow(unused_imports)]
use super::map::*;
#[allow(unused_imports)]
use super::pervasive::*;
#[allow(unused_imports)]
use super::prelude::*;
verus! {
/// `Set<A>` is a set type for specifications.
///
/// An object `set: Set<A>` is a subset of the set of all values `a: A`.
/// Equivalently, it can be thought of as a boolean predicate on `A`.
///
/// In general, a set might be infinite.
/// To work specifically with finite sets, see the [`self.finite()`](Set::finite) predicate.
///
/// Sets can be constructed in a few different ways:
/// * [`Set::empty`] gives an empty set
/// * [`Set::full`] gives the set of all elements in `A`
/// * [`Set::new`] constructs a set from a boolean predicate
/// * The [`set!`] macro, to construct small sets of a fixed size
/// * By manipulating an existing sequence with [`Set::union`], [`Set::intersect`],
/// [`Set::difference`], [`Set::complement`], [`Set::filter`], [`Set::insert`],
/// or [`Set::remove`].
///
/// To prove that two sequences are equal, it is usually easiest to use the extensionality
/// operator `=~=`.
#[verifier::external_body]
#[verifier::ext_equal]
#[verifier::reject_recursive_types(A)]
pub struct Set<A> {
dummy: marker::PhantomData<A>,
}
impl<A> Set<A> {
/// The "empty" set.
pub spec fn empty() -> Set<A>;
/// Set whose membership is determined by the given boolean predicate.
pub spec fn new<F: Fn(A) -> bool>(f: F) -> Set<A>;
/// The "full" set, i.e., set containing every element of type `A`.
pub open spec fn full() -> Set<A> {
Set::empty().complement()
}
/// Predicate indicating if the set contains the given element.
pub spec fn contains(self, a: A) -> bool;
/// Predicate indicating if the set contains the given element: supports `self has a` syntax.
#[verifier::inline]
pub open spec fn spec_has(self, a: A) -> bool {
self.contains(a)
}
/// DEPRECATED: use =~= or =~~= instead.
/// Returns `true` if for every value `a: A`, it is either in both input sets or neither.
/// This is equivalent to the sets being actually equal
/// by [`axiom_set_ext_equal`].
///
/// To prove that two sets are equal via extensionality, it may be easier
/// to use the general-purpose `=~=` or `=~~=` or
/// to use the [`assert_sets_equal!`](crate::set_lib::assert_sets_equal) macro,
/// rather than using `.ext_equal` directly.
#[cfg_attr(not(verus_verify_core), deprecated = "use =~= or =~~= instead")]
pub open spec fn ext_equal(self, s2: Set<A>) -> bool {
self =~= s2
}
/// Returns `true` if the first argument is a subset of the second.
pub open spec fn subset_of(self, s2: Set<A>) -> bool {
forall|a: A| self.contains(a) ==> s2.contains(a)
}
#[verifier::inline]
pub open spec fn spec_le(self, s2: Set<A>) -> bool {
self.subset_of(s2)
}
/// Returns a new set with the given element inserted.
/// If that element is already in the set, then an identical set is returned.
pub spec fn insert(self, a: A) -> Set<A>;
/// Returns a new set with the given element removed.
/// If that element is already absent from the set, then an identical set is returned.
pub spec fn remove(self, a: A) -> Set<A>;
/// Union of two sets.
pub spec fn union(self, s2: Set<A>) -> Set<A>;
/// `+` operator, synonymous with `union`
#[verifier::inline]
pub open spec fn spec_add(self, s2: Set<A>) -> Set<A> {
self.union(s2)
}
/// Intersection of two sets.
pub spec fn intersect(self, s2: Set<A>) -> Set<A>;
/// `*` operator, synonymous with `intersect`
#[verifier::inline]
pub open spec fn spec_mul(self, s2: Set<A>) -> Set<A> {
self.intersect(s2)
}
/// Set difference, i.e., the set of all elements in the first one but not in the second.
pub spec fn difference(self, s2: Set<A>) -> Set<A>;
/// Set complement (within the space of all possible elements in `A`).
/// `-` operator, synonymous with `difference`
#[verifier::inline]
pub open spec fn spec_sub(self, s2: Set<A>) -> Set<A> {
self.difference(s2)
}
pub spec fn complement(self) -> Set<A>;
/// Set of all elements in the given set which satisfy the predicate `f`.
pub open spec fn filter<F: Fn(A) -> bool>(self, f: F) -> Set<A> {
self.intersect(Self::new(f))
}
/// Returns `true` if the set is finite.
pub spec fn finite(self) -> bool;
/// Cardinality of the set. (Only meaningful if a set is finite.)
pub spec fn len(self) -> nat;
/// Chooses an arbitrary element of the set.
///
/// This is often useful for proofs by induction.
///
/// (Note that, although the result is arbitrary, it is still a _deterministic_ function
/// like any other `spec` function.)
pub open spec fn choose(self) -> A {
choose|a: A| self.contains(a)
}
/// Creates a [`Map`] whose domain is the given set.
/// The values of the map are given by `f`, a function of the keys.
pub spec fn mk_map<V, F: Fn(A) -> V>(self, f: F) -> Map<A, V>;
/// Returns `true` if the sets are disjoint, i.e., if their interesection is
/// the empty set.
pub open spec fn disjoint(self, s2: Self) -> bool {
forall|a: A| self.contains(a) ==> !s2.contains(a)
}
}
// Trusted axioms
/// The empty set contains no elements
pub broadcast proof fn axiom_set_empty<A>(a: A)
ensures
!(#[trigger] Set::empty().contains(a)),
{
admit();
}
/// A call to `Set::new` with the predicate `f` contains `a` if and only if `f(a)` is true.
pub broadcast proof fn axiom_set_new<A>(f: spec_fn(A) -> bool, a: A)
ensures
#[trigger] Set::new(f).contains(a) == f(a),
{
admit();
}
/// The result of inserting element `a` into set `s` must contains `a`.
pub broadcast proof fn axiom_set_insert_same<A>(s: Set<A>, a: A)
ensures
#[trigger] s.insert(a).contains(a),
{
admit();
}
/// If `a1` does not equal `a2`, then the result of inserting element `a2` into set `s`
/// must contain `a1` if and only if the set contained `a1` before the insertion of `a2`.
pub broadcast proof fn axiom_set_insert_different<A>(s: Set<A>, a1: A, a2: A)
requires
a1 != a2,
ensures
#[trigger] s.insert(a2).contains(a1) == s.contains(a1),
{
admit();
}
/// The result of removing element `a` from set `s` must not contain `a`.
pub broadcast proof fn axiom_set_remove_same<A>(s: Set<A>, a: A)
ensures
!(#[trigger] s.remove(a).contains(a)),
{
admit();
}
/// Removing an element `a` from a set `s` and then inserting `a` back into the set`
/// is equivalent to the original set `s`.
pub broadcast proof fn axiom_set_remove_insert<A>(s: Set<A>, a: A)
requires
s.contains(a),
ensures
(#[trigger] s.remove(a)).insert(a) == s,
{
admit();
}
/// If `a1` does not equal `a2`, then the result of removing element `a2` from set `s`
/// must contain `a1` if and only if the set contained `a1` before the removal of `a2`.
pub broadcast proof fn axiom_set_remove_different<A>(s: Set<A>, a1: A, a2: A)
requires
a1 != a2,
ensures
#[trigger] s.remove(a2).contains(a1) == s.contains(a1),
{
admit();
}
/// The union of sets `s1` and `s2` contains element `a` if and only if
/// `s1` contains `a` and/or `s2` contains `a`.
pub broadcast proof fn axiom_set_union<A>(s1: Set<A>, s2: Set<A>, a: A)
ensures
#[trigger] s1.union(s2).contains(a) == (s1.contains(a) || s2.contains(a)),
{
admit();
}
/// The intersection of sets `s1` and `s2` contains element `a` if and only if
/// both `s1` and `s2` contain `a`.
pub broadcast proof fn axiom_set_intersect<A>(s1: Set<A>, s2: Set<A>, a: A)
ensures
#[trigger] s1.intersect(s2).contains(a) == (s1.contains(a) && s2.contains(a)),
{
admit();
}
/// The set difference between `s1` and `s2` contains element `a` if and only if
/// `s1` contains `a` and `s2` does not contain `a`.
pub broadcast proof fn axiom_set_difference<A>(s1: Set<A>, s2: Set<A>, a: A)
ensures
#[trigger] s1.difference(s2).contains(a) == (s1.contains(a) && !s2.contains(a)),
{
admit();
}
/// The complement of set `s` contains element `a` if and only if `s` does not contain `a`.
pub broadcast proof fn axiom_set_complement<A>(s: Set<A>, a: A)
ensures
#[trigger] s.complement().contains(a) == !s.contains(a),
{
admit();
}
/// Sets `s1` and `s2` are equal if and only if they contain all of the same elements.
pub broadcast proof fn axiom_set_ext_equal<A>(s1: Set<A>, s2: Set<A>)
ensures
#[trigger] (s1 =~= s2) <==> (forall|a: A| s1.contains(a) == s2.contains(a)),
{
admit();
}
pub broadcast proof fn axiom_set_ext_equal_deep<A>(s1: Set<A>, s2: Set<A>)
ensures
#[trigger] (s1 =~~= s2) <==> s1 =~= s2,
{
admit();
}
pub broadcast proof fn axiom_mk_map_domain<K, V>(s: Set<K>, f: spec_fn(K) -> V)
ensures
#[trigger] s.mk_map(f).dom() == s,
{
admit();
}
pub broadcast proof fn axiom_mk_map_index<K, V>(s: Set<K>, f: spec_fn(K) -> V, key: K)
requires
s.contains(key),
ensures
#[trigger] s.mk_map(f)[key] == f(key),
{
admit();
}
// Trusted axioms about finite
/// The empty set is finite.
pub broadcast proof fn axiom_set_empty_finite<A>()
ensures
#[trigger] Set::<A>::empty().finite(),
{
admit();
}
/// The result of inserting an element `a` into a finite set `s` is also finite.
pub broadcast proof fn axiom_set_insert_finite<A>(s: Set<A>, a: A)
requires
s.finite(),
ensures
#[trigger] s.insert(a).finite(),
{
admit();
}
/// The result of removing an element `a` from a finite set `s` is also finite.
pub broadcast proof fn axiom_set_remove_finite<A>(s: Set<A>, a: A)
requires
s.finite(),
ensures
#[trigger] s.remove(a).finite(),
{
admit();
}
/// The union of two finite sets is finite.
pub broadcast proof fn axiom_set_union_finite<A>(s1: Set<A>, s2: Set<A>)
requires
s1.finite(),
s2.finite(),
ensures
#[trigger] s1.union(s2).finite(),
{
admit();
}
/// The intersection of two finite sets is finite.
pub broadcast proof fn axiom_set_intersect_finite<A>(s1: Set<A>, s2: Set<A>)
requires
s1.finite() || s2.finite(),
ensures
#[trigger] s1.intersect(s2).finite(),
{
admit();
}
/// The set difference between two finite sets is finite.
pub broadcast proof fn axiom_set_difference_finite<A>(s1: Set<A>, s2: Set<A>)
requires
s1.finite(),
ensures
#[trigger] s1.difference(s2).finite(),
{
admit();
}
/// An infinite set `s` contains the element `s.choose()`.
pub broadcast proof fn axiom_set_choose_finite<A>(s: Set<A>)
requires
!s.finite(),
ensures
#[trigger] s.contains(s.choose()),
{
admit();
}
// Trusted axioms about len
// Note: we could add more axioms about len, but they would be incomplete.
// The following, with axiom_set_ext_equal, are enough to build libraries about len.
/// The empty set has length 0.
pub broadcast proof fn axiom_set_empty_len<A>()
ensures
#[trigger] Set::<A>::empty().len() == 0,
{
admit();
}
/// The result of inserting an element `a` into a finite set `s` has length
/// `s.len() + 1` if `a` is not already in `s` and length `s.len()` otherwise.
pub broadcast proof fn axiom_set_insert_len<A>(s: Set<A>, a: A)
requires
s.finite(),
ensures
#[trigger] s.insert(a).len() == s.len() + (if s.contains(a) {
0int
} else {
1
}),
{
admit();
}
/// The result of removing an element `a` from a finite set `s` has length
/// `s.len() - 1` if `a` is in `s` and length `s.len()` otherwise.
pub broadcast proof fn axiom_set_remove_len<A>(s: Set<A>, a: A)
requires
s.finite(),
ensures
s.len() == #[trigger] s.remove(a).len() + (if s.contains(a) {
1int
} else {
0
}),
{
admit();
}
/// If a finite set `s` contains any element, it has length greater than 0.
pub broadcast proof fn axiom_set_contains_len<A>(s: Set<A>, a: A)
requires
s.finite(),
#[trigger] s.contains(a),
ensures
#[trigger] s.len() != 0,
{
admit();
}
/// A finite set `s` contains the element `s.choose()` if it has length greater than 0.
pub broadcast proof fn axiom_set_choose_len<A>(s: Set<A>)
requires
s.finite(),
#[trigger] s.len() != 0,
ensures
#[trigger] s.contains(s.choose()),
{
admit();
}
pub broadcast group group_set_axioms {
axiom_set_empty,
axiom_set_new,
axiom_set_insert_same,
axiom_set_insert_different,
axiom_set_remove_same,
axiom_set_remove_insert,
axiom_set_remove_different,
axiom_set_union,
axiom_set_intersect,
axiom_set_difference,
axiom_set_complement,
axiom_set_ext_equal,
axiom_set_ext_equal_deep,
axiom_mk_map_domain,
axiom_mk_map_index,
axiom_set_empty_finite,
axiom_set_insert_finite,
axiom_set_remove_finite,
axiom_set_union_finite,
axiom_set_intersect_finite,
axiom_set_difference_finite,
axiom_set_choose_finite,
axiom_set_empty_len,
axiom_set_insert_len,
axiom_set_remove_len,
axiom_set_contains_len,
axiom_set_choose_len,
}
// Macros
#[doc(hidden)]
#[macro_export]
macro_rules! set_internal {
[$($elem:expr),* $(,)?] => {
$crate::vstd::set::Set::empty()
$(.insert($elem))*
};
}
#[macro_export]
macro_rules! set {
[$($tail:tt)*] => {
::builtin_macros::verus_proof_macro_exprs!($crate::vstd::set::set_internal!($($tail)*))
};
}
pub use set_internal;
pub use set;
} // verus!