Function vstd::arithmetic::div_mod::lemma_fundamental_div_mod_converse_div
source · pub broadcast proof fn lemma_fundamental_div_mod_converse_div(x: int, d: int, q: int, r: int)
Expand description
requires
d != 0,
0 <= r < d,
x == #[trigger] (q * d + r),
ensuresq == #[trigger] (x / d),
Proof of the converse of the fundamental property of division and modulo.
Specifically, if we know 0 <= r < d
and x == q * d + r
, then we
know that q
is the quotient x / d
.