Function vstd::arithmetic::div_mod::lemma_mod_mod
source · pub broadcast proof fn lemma_mod_mod(x: int, a: int, b: int)
Expand description
requires
0 < a,
0 < b,
ensures0 < a * b,
(x % (a * b)) % a == x % a,
Proof that the remainder when x
is divided by a * b
, taken
modulo a
, is equivalent to x
modulo a
. That is,
(x % (a * b)) % a == x % a
.