pub broadcast proof fn lemma_mul_mod_noop(x: int, y: int, m: int)
Expand description
requires
0 < m,
ensures
(x % m) * (y % m) % m == #[trigger] ((x * y) % m),

Proof that modulo distributes over multiplication, provided you do an extra modulo operation after multiplying the remainders. Specifically, (x % m) * (y % m) % m == (x * y) % m.