Function vstd::arithmetic::mul::lemma_mul_left_inequality
source · pub broadcast proof fn lemma_mul_left_inequality(x: int, y: int, z: int)
Expand description
requires
0 < x,
ensuresy <= z ==> #[trigger] (x * y) <= #[trigger] (x * z),
y < z ==> x * y < x * z,
Proof that multiplying the positive integer x
by respectively
y
and z
maintains the order of y
and z
. Specifically, y <= z ==> x * y <= x * z
and y < z ==> x * y < x * z
.