pub broadcast proof fn lemma_pow_subtracts(b: int, e1: nat, e2: nat)
Expand description
requires
b > 0,
e1 <= e2,
ensures
pow(b, e1) > 0,
#[trigger] pow(b, (e2 - e1) as nat) == pow(b, e2) / pow(b, e1) > 0,

Proof that, as long as e1 <= e2, taking a positive integer b to the power of e2 - e1 is equivalent to dividing b to the power of e2 by b to the power of e1.